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Abstract

Composite slit tubes with a circular cross-section show an interesting variety in their large-deformation behaviour,
that depends on the layup of the surface that is used: tubes made from many antisymmetric laminae are bistable, and
have a compact coiled configuration, tubes made from similar, but symmetric, laminae do not have a compact coiled
state, and indeed may not be bistable, while tubes made from an isotropic sheet are not bistable. A simple model is
presented here that is able to distinguish between these behaviours; it assumes that the cross-section remains circular,
but allows twist, which is shown to be the key to making the distinction between the behaviours described.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The composite slit tubes described here are straight, thin-walled ribs with a cross-section that is a circular
arc. When made from particular layups of composite, these structures have two stable states: an extended
state where there is transverse curvature but no longitudinal curvature, and a coiled state where there is
longitudinal curvature and minimal transverse curvature; an example structure is shown in Fig. 1.

The bistable behaviour shown in Fig. 1 is not only a function of the geometry of the structure, but also of
the bending and in-plane stiffness of the surface. Structures with similar geometry, but made from an
isotropic metal sheet, are known as tape-springs (Seffen and Pellegrino, 1999), or STEM’s (Rimrott, 1966):
STEM’s do not exhibit bistability, and require a spindle or casing to hold them when coiled. The bistable
structure shown in Fig. 1 is made from a laminate where the plies are antisymmetric with respect to the mid-
surface. If the structure was made from a more conventional symmetric layup, the structure may not be
bistable, and attempting to coil it results in the structure taking up a helical shape. This paper will describe
a model that is able to reproduce these behaviours.

Previously Igbal et al. (2000) described a simple theoretical model for bistable composite slit tubes which
calculates the total strain energy of the shell as a function of the transverse and longitudinal curvatures, and
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Fig. 1. A bistable composite slit tube: (a) coiled and (b) extended. This paper will not consider the transition between (a) and (b) shown,
but will assume that the entire tube is either coiled or extended. The global coordinate system X, Y, Z used in the beam model is shown.

the angle subtended by the cross-section of the shell. This model provides an excellent insight into the
behaviour of the bistable structures, and gives a good prediction of the behaviour of strips with a simple
antisymmetric layup. However, because it restricts possible modes of deformation, it is not able to distinguish
between the behaviour exhibited by symmetric laminates, antisymmetric laminates, and isotropic systems.

This paper, together with a companion paper, Part II (Galletly and Guest, 2004) describe more com-
prehensive analytical models for composite slit tubes. One basic assumption, unchanged from Iqgbal et al.
(2000), is that the structures are longitudinally uniform, and thus the models are making no attempt to
model the transition from the rolled to the extended state, which takes place in a transition zone that can be
seen in Fig. 1. The models are instead trying to give information about the two possible stable shapes.
Within the assumption of longitudinal uniformity, this paper allows the structure to take any shape lon-
gitudinally, whilst assuming that the cross-section remains as an arc of a circle, with a radius that is allowed
to vary. Part IT will, in addition, allow any cross-sectional shape.

One important assumption that is made both here and in Part II is that the tubes are initially unstressed,
and hence we are not considering the behaviour of prestressed systems such as those recently described by
Kebadze et al. (in press). However, it would be straightforward to incorporate the effect of prestress into the
models described here.

The paper is structured as follows. Section 2 will describe the beam model, including its key innovation,
that it allows the tubes to twist. Section 3 presents the results of applying this model to four sample tubes:
one is made from an antisymmetric laminate; two are made from symmetric laminae; and one is made from
an isotropic sheet. Section 4 presents a brief comparison with previous experiments and computations, and
Section 5 concludes the paper.

2. Derivation of model

It is assumed that the tube is initially unstrained in its extended state, as shown in Fig. 2. The tube
geometry is defined by two length parameters, the width /, and the initial radius of curvature R; it is
assumed to be infinitely long. To fully define the tube also requires the in-plane and bending stiffness
properties of the shell to be defined; these are described in Section 2.3.

The beam model, described here, assumes that the beam deforms while remaining longitudinally uni-
form, with a cross-section that is an arc of a circle who’s radius may change. Its configuration is then fully
defined by four global strain parameters which will be described next, in Section 2.1. Section 2.2 describes
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Fig. 2. The initial geometric parameters for the bistable tube, R and /, and the global coordinate system used for describing defor-
mations and loads. The X-axis is in the longitudinal direction, and the Y-axis is in the transverse direction. The angle « = //R will be
used for presenting results in Section 3.

the kinematic relationships between these global strain parameters, and local strains in the shell, and
Section 2.3 describes the stress—strain relationship between these strains and the corresponding local
stresses. Section 2.4 integrates these stresses to give global forces, work-conjugate to the global strain
parameters: setting these forces to zero gives equilibrium configurations of the structure, and Section 2.5
describes the stability calculations for these configurations.

2.1. Global strain parameters

The assumption that the structure is uniform longitudinally allows six beam deformation modes:
extension, Ey; twist, @y; bending about two axes, Ky and Kz; and two shear modes, I'yy and I'y,. These
modes are shown in Fig. 3.

In fact, the beam model considers only three of the beam deformation modes shown in Fig. 3. Two we
can exclude by symmetry: the system has a twofold rotational symmetry about the Z-axis, and Ey, Ky, ®x
and I'yy are preserved by this symmetry operation, while K, and I'y, are reversed. Thus, K, and I'y; would
only be of interest through some symmetry-breaking phenomenon that is not observed in experiments, and
hence K, and I'y; are assumed to be zero. We also exclude the shear modes, I'yy and 'y, because we do not
wish to explicitly constrain warping, and the deformations corresponding to I'yy and I'y; are simply
warping of the cross-section.

Thus the beam model considers three beam deformation modes, Ey, Ky, @y, to which we add a further
parameter to describe the transverse curvature of the section, K. Our model therefore describes the con-
figuration of the slit tube by four parameters. In the initial state Ex = Ky = &y = 0, and K; = 1/R, and this
is the first equilibrium point. These four global strain parameters fully define the shape of the structure; next
we will consider the deformations of the surface, the local strains, that result from varying these four
parameters.

2.2. Local strains

Changing the global strain parameters from the initial values causes deformation of the structure. This
section considers the structure as a shell, and derives expressions for the strains due to changes in the global
strain parameters. The strains in the structure vary with position in the cross-section, described by the
parameter s, shown in Fig. 4; they are described in a local coordinate system x(s), y(s), z(s). At the centre of
the structure, these axes are aligned with the global system, but off-centre the z-axis remains perpendicular,
and the y-axis parallel, to the surface.

To describe the deformation of a shell generally requires six generalised strain parameters. However, we
only consider four of these, extension in the x-direction, e,, curvature in the x- and y-directions, «, and x,,
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origina structure
(identical in each case)

deformed structure
(a) (in bold) (b)

Fig. 3. Six beam deformation modes: (a) extension, Ey; (b) twist, ®y; (c) bending Ky; (d) bending K; () shear I'yy; (f) shear, I'y;. Only
Ey, @y and Ky are allowed in the beam model for the bistable tube.

Neutral axis
for bending —-—3xC -
about the Y-axis

Fig. 4. A cross section of the beam.

and curvature of the surface, x,,. Extension transversely, ¢,, and shear, 7,,, are not defined by the global
deformation modes, and we assume that these are not explicitly constrained. That shear deformation is
allowed is consistent with our assumption in Section 2.1 that the surface is allowed to warp.

Note our convention that global strains of the system, considered as a beam, are denoted using upper-
case letters, while local strains of the surface, considered as a shell, are denoted using lower-case letters. It is
also worth noting here that treating the structure as both a beam and a shell leads to potential confusion
because of the differing standard notations for curvature. As a beam, where the X-axis defines the longi-
tudinal direction, Ky describes the rotation of the cross-section around the Y-axis as one moves along the
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beam. As a shell, where the z-axis describes a normal to the surface, x, describes a similar rotation of the
surface around the y-axis as one moves in the x-direction. Thus along the centre-line of the beam, where x,
vy, zand X, Y, Z coincide, x, = Ky.

2.2.1. Strains due to twisting

The strains due to twisting are the most complex part of this exposition, and hence are detailed sepa-
rately.

We make the assumption that due to twisting, each section rotates about the centre-line of the structure;
choice of rotation axis does not affect the resultant local twist of the surface (Timoshenko and Gere, 1961,
Chapter 5) but does affect the longitudinal extension. An alternative, more difficult, assumption, would be
that each section rotates about its shear centre. However, for small K7 the expressions reduce to the same
values, which will be described in Section 2.2.5.

We note here the convention that we will use for twist of the surface, k,,. Literature on shell and plate
theory, and on composite theory, use different conventions (similar to the distinction between engineering
and mathematical shear strain). We shall use the composite theory definition, «,, = —28%w/dxdy, where w
is the displacement of the surface in the out-of-plane, z, direction, as defined by Halpin (1984) (the literature
on shell and plate theory would define x,, to be half this value).

Consider the small section of surface shown in Fig. 5. The rotation of a cross-section at a distance x from
a reference section is given by 6 = ®yx, and the displacement in the z-direction of a point at (x, y) is given by
w = 0y = &yxxy. Thus

*w
- 1
T axdy? (1)
and x,, is given by
*w
b= —2 = —20y. 2
Ko Ox 0y x @)

The global twist mode, @y, will cause longitudinal fibres to take up a helical shape, and hence also cause
some extension. A longitudinal fibre at a distance ¢ from the axis of rotation will end up at an orientation
c®y to the longitudinal axis. A short length of fibre is shown in Fig. 6, and will (neglecting higher-order
terms), undergo a strain e,

(Df(cz
= . 3
= ()
The length ¢, as shown in Fig. 7 is given by
2 . SKT
= — 4
c X sm( 3 ), 4)

Fig. 5. A small section of twisted surface.
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Fig. 6. A short length of twisted longitudinal fibre.

Fig. 7. A cross-section of the beam, showing the distance from the central fibre.

and hence
292 K
GZK—;Sinz <S7T> (5)

2.2.2. Longitudinal strain
Beam extension, beam bending, and beam twisting (Eq. (5)) will cause longitudinal strain:

202 K
e.(s) = Ex — d(s)Ky + =5 sin® (S—’> , (6)
K2 2

where d(s) is the distance from the neutral axis for bending about the Y-axis, as shown in Fig. 4.
Geometry shows that d(s) is given by

1 2 . IKr
d(S) = K_T [E SIHT — COSSKT:| s (7)
and hence
Ky[2 . IK 20 . K
GX(S) :EX—I?;{E SlnTT_COSSKT:| +K_72f{51n2 <S7T> (8)

2.2.3. Longitudinal curvature
A component of beam curvature will cause local longitudinal curvature,

K.(s) = Ky cos sK7. 9)
The angle sK7 is shown in Fig. 4.

2.2.4. Transverse curvature
K, is equal to the change in the transverse curvature, Kr, from its initial value 1/R:

1
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2.2.5. Kinematic relationships for small cross-sectional curvature

Experience with using the model described here shows that the interesting behaviour occurs when the
cross-sectional curvature is small, which allows the expressions derived to be simplified. Here we present
simplified equations for the local strains that will be used in later calculations, found from Egs. (8)-(10) and
(2) by assuming that K is small, and neglecting X2, and higher powers:

K, = Ky, (12)

1, = Kr —l, (13)
R

Ky = —2Px. (14)

2.3. Stress—strain relationship

Although the deflections in the structure are large, we assume that the strains remain small, and the
general, linear stress—strain relationship for a composite material is then given by

N Ay An A | Bu B By €x
N, Ay Ap Ay | B Bn Bx €
Ny Aig Ax Ass | Bis By Bes Vay
e (15
M, By By Bis | Di Di Dy Ky
M, By By By | D1 Dn Dy Ky
M,, | Bis B Bes | Dic Dy Des | \ Ky

where €, €, 7,,, K, K, and k,, are the generalised strains, already introduced, and N, N,, N,,, M,, M, and
M,, are the corresponding stress resultants. The A;; are the laminate extensional stiffnesses, relating exten-
sional and shear forces to extensional and shear strains. The B;; are the laminate coupling stiffnesses, relating
extensional and shear forces to bending and twisting curvatures, and bending and twisting moments to
extensional and shear strains. The D;; are the laminate bending stiffnesses, relating bending and twisting
moments to bending and twisting curvatures. The theory explaining how these laminate stiffnesses are
calculated can be found in any good primer on composite materials, for example Hull (1981) or Halpin
(1984).

In this model, no forces are applied at the edges of the tube. Hence N, = N,, = 0 here, and we assume
that this is true throughout the tube; correspondingly, we take ¢, and 7,, to be unconstrained. We can
rewrite Eq. (15) as

Ny A By By Big | A A €x

M, By Du Dyy Dis | By Big Ky

M, Bi, Din Dy Dy | By By Ky

M, | = |Bis Dis Dw De | Bw B Ky (16)
_ — — — _ | — _ —
0 Ay Bix Bn By | Axn A €
0 | A6 Bis Bx Bes | Az Ass Yy



4524 D.A. Galletly, S.D. Guest | International Journal of Solids and Structures 41 (2004) 45174533

Thus we find that €, and y,, are given by

€x
-1
€\ _ _|A4n Ax Az Bz By By || Ke (17)
Yy Are  Ass Ais Bis B Bes K, |’
Ky

and the remaining stress resultants are given by

Ny 47, By, B, Bj €x

M. | _ |By Dy Dy, Dy Ky (18)

M, By, Di, D D Ky

M;, Bis Djs D3, Dg Kxy

which we write as N = [K"]e, where the reduced stiffness matrix [K*] is given by
Ay Bi B By A Ag B
K] = By Du Din Dig|  |Bin Big||4An Ax A1z Bz By By (19)

By D1z Dy Dy By By | | Az Ass A Bis Bxw Bes| |’
Bis Dis Dy Degs By Bes

For any antisymmetric layup, symmetry arguments show that B}, = B}, = D}, = D3¢ = 0. Similarly, for
a symmetric layup, B}, = B}, = Bj¢ = 0. The systems in this paper will all either be antisymmetric, or
symmetric, and B}, = B}, = 0 will be used to simplify the algebra in the next section.

2.4. Derivation of global forces
Corresponding in a work sense to each of the global strain parameters, Ey, Ky, @y, Kr will be a global

force: a tension P, a longitudinal moment A/;, a torque 7 and a transverse moment/unit length, M7. To find
an equilibrium position, we are looking for a position where each of these equals zero.

2.4.1. Global tension
The global tension is given by

1
2
P / N.ds. (20)
-
For the symmetric and antisymmetric sections that we are considering, from Eq. (18) with B}, = B}, =0,
Ny = A4}, €; + Blgkxy, (21)
and substituting from the kinematic relationships Egs. (11) and (14),
" KyKT 12 @2 S2 «
Nx:All (EX+T|:E— 2 + ; _ZBI6¢X' (22)
Thus, completing the integration
o383
P=Aj (EXZ + 2)(—4) — 2B} Py l. (23)

As will be seen later, the global strain Ey only occurs in the expression for this global force, and not any
other. Thus, it is straightforward to ensure that P = 0 by finding an expression for Ey and substituting this
algebraically into the other kinematic relationships.
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Setting P = 0 gives

oL
=2 Bis by — X 24
Ex Ay 24 24
and substituting into expressions for the strains, Eqgs. (11)—(14) gives
KyKr [P ] o3[, B Bjs
&= [12 SI+5 15 1 +2AT1 Py, (25)
Ky = Ky, (26)
1
K'y = KT — E, (27)
Ky = _2¢X (28)

These expressions, functions of only Ky, Kr and @y, will be used for calculating the other global forces.

2.4.2. Global torque

It was clear how to find the global tension in the beam, but the relationships are not so simple for the
three remaining global forces. We shall calculate these using Virtual Work.

To calculate the torque, we consider that if a small change in the twist 8@} occurs, the internal work
done must be equal to the external work. The external work per unit length is given by 7 6®7. To calculate

the internal work, we must first calculate the changes in the strains which are compatible with d®%:
Oe .
e = 5053, (29)

where € is the initial strain vector, and ¢ is the vector of strain increments. The internal work done per unit
length is thus given by

/se Nds—/ 5@(5 Nds, (30)
X

where N is the vector of internal forces. Equating the internal and external work, and cancelling both sides
by 6@} we find an expression for the torque:

T:/zE Nds. (31)
2

Expanding this out gives

!

_[? Oe, oK 0K, 0Ky
T_/4 (N*6¢X+Maqs +M}a¢ M”E)(I)X)ds' (32)

As Ok, /0®y = 0k, /0Py = 0 this simplifies to

L/ Be, oK
T= Ny —— + My, —2 | ds. 33
/_% ( 3oy M B0y ) (33)
After substituting for these terms, and integrating with respect to s, we obtain the following:

R 1 B}
T =4}, [(qsz KyKr) 320 ] — 2Dt IKy — ZD;GI(KT - E) + 4(0;6 - ) [®y. (34)
11
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2.4.3. Global longitudinal moment
A virtual work approach shows that the longitudinal moment, M, is given by

M—/é N2 g, Oy gy Oy O g
e “0Ky oKy Ky VoK, )

_L
2

As 0k, /0Ky = 0Ok,, /0Ky = 0 this simplifies to

2 de oK
M, = No—> 4+ M, —* )ds.
! 1%( aKy+ aKy) s

After substituting for these terms, and integrating with respect to s, we obtain the following:

KPP

M, = 4, [(KYKT DY) —— =20

1
} + D}, IKy + D}, 1<1<T —§> — 2D 1Dy

2.4.4. Global transverse moment
A virtual work approach shows that the transverse moment, My is given by

1

MT:/Z (Nx—% g, 2 S LY ,a'c*y)ds.
I
-2

0Ky oK " OKr oKy

As 0k, /0K = Ok,,/0Ky = 0 this simplifies to

P/ de oK,
MT/_% (N GK JrMyaKT)ds.

After substituting for these terms, and integrating with respect to s, we obtain the following:

I 1
My =4 [(KYKT — @) 7;0 } + DL IKy +D;21<K, —R) — 2D} Py

2.5. Stability criteria

(37)

(38)

Finding an equilibrium point requires that 7' = M; = My = 0, but it is also necessary to know about the
stability of this equilibrium. This can be determined by examining the local tangent-stiffness matrix, [H],
given in Eq. (41). If [H] is positive-definite, the equilibrium will be stable; the test for positive-definiteness
used in this paper is that the smallest eigenvalue of [H], the stiffness of the softest mode of deformation,

must be positive:

or oM oMy
0Dy 0Dy 0Dy

— | o oM oMy
[H] = Ky Ky oKy |°

or M aMr

3Ky oKy oKp

(41)
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where,

oT 5 B*2
—— =4}, | (39} — KyKr) == ! }+4(D26——16>l,

by 360 A5,
oM .o Kl .
a0y~ AnPrzgy 2Pl
oM Kyl
= Al By o — 2D},
by 360 42)
oMy KD Kil'  pe
oKy 1720 TP
aMl * 15 *
a_KT:A“ (2KyKy — q52)720 + D}, 1,
oM, K2P
= A}, =+ Dy L.
oK, 7 TP

The matrix [H] is, of course, symmetric: 07/0Ky = 0M,/0®y, OT/0Kr = 0My;/0®y and
aMT/aKy == @M,/@KT

3. Results

Results are presented for four sample cases which are chosen to show the range of possible behaviours
for these systems, and to allow some comparison with previously published experimental results, in Section
4. For each case we show:

o simplified expressions for the torque and moments, taking into account the appropriate zero terms in the
reduced stiffness matrix;

o the reduced stiffness matrix;

e the position of equilibrium points other than the original, for varying  (shown in Fig. 2), and whether
these equilibria are stable.

The results are presented for three tubes made from different laminae, and one tube made from an
isotropic sheet. The laminate results presented are for 5-layer laminates; each ply is 0.21 mm thick, with a
polypropylene matrix containing 30% volume fraction of glass fibres. One antisymmetric laminate is
chosen that has been studied previously, both experimentally and computationally; the layers are laid up
with the glass at [+45°, —45°,0°,+45° —45°] to the longitudinal direction. A similar symmetric laminate is
also presented with the glass at [+45°, —45° 0°, —45°, +45°] to the longitudinal direction. This proves not
to have a second stable state for practical systems, and hence a second symmetric laminate is presented
that does have a second stable state, where the layup is [+40°, —40°, 0°, —40°, +40°]. The isotropic results
are presented for a 0.125 mm thick steel sheet. Further details of the materials will be found in Galletly
(2001).

3.1. Antisymmetric layup

For an antisymmetric layup, where D}, = Dj, = 0, the expressions for the torque, and for the longitu-
dinal and transverse moments, reduce to

T =4 (9 - KK)quls 4oy, B g (43)
— o 177360 © 4 )Y
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* K 15 * * 1

M, = A7, [(KYKT — ) 7;0 } + Dj, Ky +D121<KT —R>, (44)
* 2 Kyls * * 1

My = 43, | (KyKr — &%) =50 + D}, IKy + D5, Kr -z ) (45)

The reduced stiffness matrix for the [+45°, —45°, 0°, +45° —45°] layup is

N, 8757 0 0 013617 [ &
M| _| 0 0819 0616 0 K 46)
M, 0 0616 0799 0 K, |

M, 0.1361 0 0 0643 | \xy

The units for this matrix are: GPa mm for the top left-hand term (4;,), GPa mm? for the top right-hand
1x3 and (identically) for the bottom left-hand 3x 1 matrix (Bj,, Bj,, B},) and GPa mm?® for the bottom
right-hand 3 x 3 matrix ([D*]).

Solving Egs. (43)—(45) numerically allows equilibrium points (7 = M; = My = 0) in addition to the
original state to be found for a greater than a critical value, which for this example is o > 56°. Fig. 8 shows
how the values of the strains at the equilibrium point vary with the initial cross-sectional angle «. A number
of different solutions are possible, but only one is stable. The stable mode has @y = 0, and thus for this case
a simpler model that neglects twist is adequate.

For large values of «, the stable solution tends towards Ky = 0.752/R, K; = 0, with &y = 0.

1.0 . . . . . . .
08} .
£
<
=
3 06F kR .
<
s \
o0
5 041 \\ _
2 N KyR
<
g N - st oxR
z 02r B e K7R
g KRy , T~~~ —_
E “——:::::=========
g 0F xR
k) :
02} - .
----------------- OyR
0° 50° 100° 150° 200° 250° 300° 350°

initial cross-section angle, o

Fig. 8. Equilibrium points in addition to the initial state for the 45° antisymmetric layup. There is only one stable state, shown by the
solid line, and this exists for o« > 56°. This solution has a corresponding unstable branch shown by the dashed line. At o = 69° a
bifurcation leads to two additional twisted unstable solutions (one with positive twist, one with negative twist), shown by dotted lines.
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3.2. Symmetric layup

For a symmetric layup, where B}, = 0, the expressions for the torque, and for the longitudinal and
transverse moments, reduce to

&y P 1
T =47, [(qb; — KyKr) ;W] — 2D} IKy — 2D;61(KT — E) + 4D 1Dy, (47)
* 2 KTIS * * 1 *
M, = 4;, | (KyKr — (DX)W + Dy 1Ky + Dl | Ky — 5 | = 2Dl ®x, (48)
* 2 Kyls * * 1 *
My = 45, | (KyKr — @3) 730 + D}, IKy + D31 | Ky — 7))~ 2D [Py (49)

3.2.1. 45° layup
The reduced stiffness matrix for the [+45°, —45°,0°, —45°, 4+45°] layup is

Ny 8.757 0 0 0 €

M. | _ 0 0.868 0.665 0.345 Ky (50)
M, 0 0.665 0.848 0.345 K, |’

M,, 0 0.345 0.345 0.681 Kyy

The units for this matrix are identical to those for the matrix in Eq. (46).

Solving Egs. (47)—(49) numerically shows that there are the only stable solution in addition to the ori-
ginal state exists only for very large o. In the range of practical interest, e.g. « < 360°, there are no additional
stable solutions; unstable twisted solutions appear for o > 112°. Fig. 9 shows how the values of the strains
for the unstable equilibria vary with the initial cross-sectional angle o.

3.2.2. 40° layup

Although the additional stable solution for the symmetric 45° layup exists only for very large o, it would
be wrong to conclude that this is always the case. Here we present a 40° layup that does have a second
stable equilibrium solution for « in the range of practical interest.

The reduced stiffness matrix for the [+40°, —40°,0°, —40°, +40°] layup is

N, 9.844 0 0 0 &
M, | | 0 1092 0.647 0398 x, (51)
M, 0 0647 0660 0281 «, |

M, 0 0398 0281 0.663] \ Ky

The units for this matrix are identical to those for the matrix in Eq. (46).

Solving Egs. (47)—(49) numerically shows that, in addition to the original state, there is a stable twisted
solution, that appears for o > 89°, as well as the unstable solutions that are little altered from those pre-
sented in Fig. 9. Fig. 10 shows how the values of the strains at the equilibrium point vary with the initial
cross-sectional angle «. Note that here, the stable state found is twisted, with @y # 0.

For large values of o, the stable solution tends towards Ky = 0.503/R, Kr = 0.018/R, &x = —0.095/R.

3.3. Isotropic case

For the isotropic case, the expressions for the torque, and for the longitudinal and transverse moments,
reduce to
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exist for o > 112°, and are

Fig. 10. Equilibrium points in addition to the initial state for the 40° symmetric layup. There is only one stable state, shown by the solid
line, and this exists for o > 89°. This solution has a corresponding unstable branch shown by the dashed line. Additional unstable

solutions are shown by dotted lines.
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Byl
T:Et{(di/z\,—KyKT)?’Xéo} +2DI(1 = v) Py, (52)
M, = Et| (KyK —qsz)KLl5 + DKyl + vDI( Ky — (53)
1= y&&r x) 720 Y v T—p)

Ky PP
720

1
My = Et {(KYKT - @3) } + vDKyl +DI(KT - 1_3)' (54)

The reduced stiffness matrix of an isotropic sheet (Calladine, 1983, adjusted for the definition of x,,) is

N, Et 0 0 0 €
M| |0 D w0 Ky
M, | =0 w D 0 K | (55)
M, 0 0 0 20 \k,

where E is the Young’s modulus of the material and v the Poisson’s ratio, ¢ is the thickness of the material,
and D = E£3/12(1 — v?). For a 0.125 mm thick steel sheet this becomes

N, 25.875 0 0 0 €

M. | _ 0 0.0370 0.0111 0 Ky (56)
M, 0 0.0111 0.0370 0 K, |

M,, 0 0 0 0.0130 Ky

The units for this matrix are identical to those for the matrix in Eq. (46).

Solving Egs. (52)—(54) numerically shows that there are no stable solutions in this case. Fig. 11 shows
how the values of the strains at the equilibrium point vary with the initial cross-sectional angle . Unstable
solutions appear for o > 62°; for these solutions @y is always zero. Because of this, a model that neglects
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Fig. 11. Equilibrium points in addition to the initial state for the isotropic case. There are only unstable equilibria, which exist for
o > 62°, shown by dotted lines.
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twisting would find this equilibrium point; however, it would not correctly predict the stability of the
equilibrium, as the unstable mode of deformation involves twisting. These solutions correspond to the
stable/unstable pair of solutions for the 45° antisymmetric layup, but in this case both branches are
unstable.

4. Comparison with experimental results

For the 45° antisymmetric layup, the values given by the beam model for the longitudinal radius of
curvature in the coiled state, 1/K,, can be compared with the results of experiments and finite element
analyses reported by Igbal et al. (2000). The finite element results presented were obtained by re-running
Igbal’s analyses using the material properties given in this paper, which differ slightly from those used by
Igbal. The method is described in detail by Igbal (2001), and a summary of the method will be given in Part
I1, where more detailed cross-sectional shapes are considered. The comparison is given in Table 1.

It can be seen from Table 1 that the results from the beam model correlate fairly well with the finite
element results (particularly for large cross-sectional values of «), but less well with the experimental results.
A possible reason for the disparity between the calculated and experimental results is that, at high strains,
the matrix material is not linear elastic, but instead exhibits viscoelastic behaviour. The beam model pre-
sented in this paper, and finite element calculations, have all assumed linear elastic behaviour. If the dis-
parity was due to viscoelastic effects, the beam model should correlate well with the instantaneous
experimental radius at the moment of snap-through. The experimental measurements reported by Iqgbal
et al. (2000) were taken 24 h after snap-through. A brief experiment to try to capture an instantaneous
radius was conducted; this measured a value of 37 mm, which accords much better with the calculated
results.

The paucity of experimental data, and the poor agreement between the experimental and linear-elastic
analytical and computational models, shows the need for further experimental and computational studies;
work on this continues.

5. Conclusions

This paper has shown that modelling twist is essential to distinguishing between slit tubes that are bi-
stable and those that are not. For many antisymmetric layups, twist is unimportant, and a model that
neglects twist is adequate, but it will not be able to determine if the model is unstable in a twisting mode.
For symmetric layups the second equilibrium point, if it exists, is twisted. For isotropic systems, a second
equilibrium point exists that is not twisted, but it is unstable.

Table 1
The coiled longitudinal radius of curvature, 1/K,, found using the beam model, compared with experiments and finite element cal-
culations for the antisymmetric 45° layup with R = 29 mm

o (°) Experiment (mm) Beam model (mm) Finite element (mm)
280 30 38.5 39.6
200 30 38.5 40.5
120 32 38.7 43.0
90 33 39.2 45.7

The experimental results are taken from Igbal et al. (2000) and the finite element results are found using the method described in Igbal
(2001).
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